
Data Types: Serialization
and Versioning, courtesy

of Boost
7-Nov-2012, Eric Church, Yale

Tuesday, November 6, 2012

Boost library

• Need to accommodate being able to read
back old data structures, while creating new
ones: adding features to output classes.

• Boost serializing/versioning takes care of
this in one fell swoop

Tuesday, November 6, 2012

#include <boost/serialization/list.hpp>
#include <boost/serialization/string.hpp>
#include <boost/serialization/version.hpp>
#include <boost/serialization/split_member.hpp>

class gps_position
{
 friend class boost::serialization::access;
 int degrees;
 int minutes;
 int seconds;
 int milliseconds;
 int microseconds;

 std::string driver_name;

 template<class Archive>
 void save(Archive & ar, const unsigned int version) const
 {
 // note, version is always the latest when saving
 ar & driver_name;
 ar & degrees;
 ar & minutes & seconds & milliseconds & microseconds;
 }
 template<class Archive>
 void load(Archive & ar, const unsigned int version)
 {
 if(version > 0)
 ar & driver_name;
 ar & degrees;
 ar & minutes & seconds & milliseconds & microseconds;
 }
 BOOST_SERIALIZATION_SPLIT_MEMBER()
 public:
 gps_position(){};
 gps_position(int d, int m, float s) :
 degrees(d), minutes(m), seconds(s)
 {}

};

BOOST_CLASS_VERSION(gps_position, 1)

Imagine we
decide we want
to add the string

driver_name

class Version number

The macro BOOST_SERIALIZATION_SPLIT_MEMBER()
generates code which invokes the save or load depending on
whether the archive is used for saving or loading.

Tuesday, November 6, 2012

int main() {
 // create and open a character archive for output
 std::ofstream ofs("filename");

 // create class instance
 const gps_position g(35, 59, 24.567f);

 // save data to archive
 {
 std::ofstream ofs("filename");
 boost::archive::text_oarchive oa(ofs);
 // write class instance to archive
 oa & g; // save, equivalent to oa << g
 ! // archive and stream closed when destructors are called
 }

 // ... some time later restore the class instance to its original state
 gps_position newg;

// load data from archive
 {
 // create and open an archive for input
 std::ifstream ifs("filename");
 boost::archive::text_iarchive ia(ifs);
 // read class state from archive
 ia & newg; // load, equivalent to ia >> newg
 // archive and stream closed when destructors are called
 }
 return 0;

Tuesday, November 6, 2012

Conclusion

• Is there any reason not to use the boost
libraries?

• If not, after iterating more with Cat, I will
start coding the data classes

Tuesday, November 6, 2012

